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Abstract-A pure radiative method is presented for measuring the directionally-dependent thermal diffus- 
ivities of anisotropic solids, especially of free-standing films. A real point and line source are realized by a 
focussed laser beam. Both configurations allow measurements of the anisotropic thermal diffusivity. 
Because of the smaller power density applied for the line source, this method is very suited for thermic 
sensitive films. Virtual image sources are used to account for the boundary conditions of a rectangular 
slab. The temperature vs time curves are recorded by infrared radiation using an InSb-detector. They are 
fitted to the solution for a constant heat source switched on at time zero (step heating) disregarding the 
prefactor. Thus, there is no need to know the absorption coefficient or the absolute temperature rise of the 
sample. The influence of sample dimensions and of radiative losses is investigated. For sufficiently thin 
samples a two-dimensional treatment is suited. Extrapolating the diffusivities determined in different time 
spans to zero heating time excludes radiation losses. A comparison to results from steady-state methods 
for well-defined samples confirm the reliability of the method. Representative results on highly oriented 

polymers are presented. 0 1997 Elsevier Science Ltd. 

1. INTRODUCTION 

In this paper we present a method for measuring the 
directionally-dependent thermal diffusivity of low 
conducting materials such as polymers. In that case 
periodic methods using thermal waves suffer from the 
high damping due to the low thermal diffusivity. 
Moreover, the mixing of tensor components makes 
the analysis difficult and thus, the appropriate 
methods are not well developed up to now [l]. This is 
surprising since heat conduction was the first solid 
state property, except the polarization dependent 
refractive index, whose directional dependence was 
discovered by De SCnarmont [2, 31. From a present 
point of view the method was quite modern by imag- 
ing the isotherms due to a heat point source. A thin 
layer of paraffin wax on a crystal surface recorded 
the isotherms by the border between the molten and 
recrystallized part around the heat source and the 
exterior solid part. He observed circles and ellipses as 
isotherms. For the latter the anisotropy ratio 
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follows from the ratio of the principal axes xl’, x’ of 
the ellipsis. He found e.g. for a quartz crystal plate 
A = 1.72 which is comparable to A = 1.72 & 0.3 from 
data taken from [4] or A = 1.70 rt_ 0.1 from a refined 
version of the method [5]. In addition, he tried suc- 
cessfully to find whether mechanical stress applied to 
a glass could result in anisotropic heat conduction. 

The method was improved by Roentgen [6] using 
evaporation of a moisture film freshly deposited onto 
the surface. Spores (lycopodium) were subsequently 
spread over the sample and blown away. They 
remained attached at the wet part and marked a very 
accurate isotherm. 

One of the main problems at that time was to estab- 
lish the symmetry of the thermal conductivity tensor 
[6], which is an important question from a principle 
point of view. Since the methods used delivered only 
relative values, despite their high sensitivity in a small 
temperature range, they were more or less forgotten. 
Miiller assisting Debye with experiments during the 
lectures demonstrated this method and later applied 
it to oriented polymers [7]. In polymers the anisotropy 
can be easily changed by orienting the linear macro- 
molecules within a sample by simply stretching it uni- 
axially. The anisotropy can serve as a measure of 
orientation if birefringence is not measurable. With 
the advent of liquid crystals these have been used as 
temperature indicators. Anisotropies up to A = 25 
have been recorded for linear polyethylene at room 
temperature [8]. When infrared detectors became 
available, the method could be treated by electronic 
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A = x /aL anisotropy ratio 
h sample width 
c 
d” 

specific heat at constant pressure 
sample thickness 

El exponential integral function 
erf error function 
erfc 1 -erf 

-:I 
frequency 
height of image sources above sample 
surface 

k, k”, k’ thermal conductivity. parallel, 
perpendicular to symmetry axis 

N dimension of space (2,3) 

4 pressure 

Q specific power of heat sources 
Y distance thermometer spot/heating 

spot 
Yl, radius of the source spot 

R geodesic distance 
s slope 
t time 
T temperature 
X space vector 
ax,, .l’ spatial coordinates 

X‘ fractional crystallinity. 

NOMENCLATURE 

Greek symbols 
z, x’, ?’ thermal diffusivity, parallel. 

perpendicular to symmetry axis 
%,7 2” tensor components of thermal 

diffusivity 
i = L/L,, draw ratio or wavelength 

P penetration depth 

P density 
5 = R’/t. 

means and thus, used in the purely transient regime 
of heat conduction. 

A first step in this direction was made in Ref. [5] 
where it was shown, that the anisotropy ratio follows 
from the ratio of the slopes of T(t)-curves due to a 
step heating point source : 

(2) 

x, : distance of the sensing point from the source into 
direction i, s: slope at the point of inflection of the 
T(Z) curve, N: dimensionality of the heat equation 
(N = 2,3). In this paper we will present the devel- 
opment of the step heating method now yielding 
absolute values of directionally-dependent thermal 
diffusivity. This method is especially well suited for 
low heat conductors, where time intervals of lOPlOO s 
can be used for recording the T(t)-curves with 
sufficient sensitivity. The radiative temperature scan- 
ning enables measurements at high temperatures. but 
not much below 0 C. 

2. THEORY 

The heat diffusion equation in the presence of sour- 
ces is given by 

?T(X, I) ?‘T(x, 1) 
dr-% ” 

___ = 0(x, t). 
LY, c?x, (3) 

LX,,: component of the diffusivity tensor a = k/c,p 
where k is the thermal conductivity tensor, cP is the 
specific heat at constant pressure and p the density. 
0(x, t) = &x, t)/c,p is the specific power of a heat 
source. A special solution due to a finite amount of 
energy released in zero time at one point of the sample. 

i.e. a delta-heat source, is the Green’s function of the 
anisotropic diffusion equation [9]. This solution is 
approximated by the flash-heating methods. All other 
solutions due to source distributions in space and time 
can be derived by appropriate integrations. 

c,: = 

I 0: I<f’ 

where 

((r”)) = ((a,,)) ’ : inverse tensor of 
the thermal 
diffusivity i.e. the 
thermal resistivity 

R’(x, x’) = ~cY~~(x,-.u~)(.~, -x;) : geodesic distance 
N : dimension. 

In the following we will confine ourselves to two 
cases: a point source of constant strength and a line 
source of constant strength. Both are switched on at 
time t = 0 (Fig. I). In the case of the point source we 
obtain by integration with respect to time the tem- 
perature observed at that time at a point x 

In case of the line source we get by additional one- 
dimensional integration with respect to space 
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line source point source 
Fig. 1. Schematic configuration of the line and point source (y is the distance of the thermometer spot 

from the heating spot). 

where 

R,, = f&“~‘+c?~(y* +d*) 

erfc(x) = 1 -erf(x) = 5 _Ym e-‘I dt 
s 

erf : error function 

E, (x) = 
s 

co eeU 

X 
u du : exponential integral function. 

Since isotherms are the loci of constant geodesic dis- 
tances i.e. 

x: x: 
4LX,,t 4u,,t (6) 

we get directly equation (1) for the principal direc- 
tions. It is obvious that this relation holds in the 
stationary case as well as in any transient one. From 
T(x) = const .f(l) with 5 = (R*/t) we further see that 
all curves have the same shape i.e. they follow a 
mastercurve after proper scaling of the axes. The sca- 
ling factor for the time axis is given by the diffusivity. 
It is determined by a fit of the shape to the measured 
7(t)-curve taken at distance Y. Since only the shape is 
fitted, the strength of the signal depending on the 
absorption as well as the emissivity and the absolute 
temperature calibration are of no concern. This is a 
significant advantage of our treatment. Figure 2 shows 
the comparison of the normalized temperature traces 
of a point and a line source described by equations 
(4) and (5) (calculations with thermal diffusivity 
c( = 1 lo-’ m’js, distance y = 2.3 mm). Despite gen- 
eral simplicity the boundary conditions and exper- 
imental details need further consideration. 

2.1. Boundary conditions 
The presence of a flat boundary can be treated using 

the method of image sources. No heat flux across the 

surface i.e. no losses to the surrounding is achieved by 
posing an image of the real source such that the surface 
acts as a mirror plane. Constant temperature at the 
surface is achieved by posing an image drain of equal 
strength at the above mentioned position. This situ- 
ation might appear for surfaces of bad conductors in 
close contact to a metal or other good conductor. 

Intermediate boundary conditions can be approxi- 
mated in principle by weighting the images with a 
factor - 1 < w i + 1. We have not tried such an 
approach because it introduces a further unknown 
parameter and we doubt in its general usefulness. If 
there are pairs of surfaces like that of a rectangular 
slab we must consider the images of either side. Thus, 
images of images appear resulting in an infinite sum. 

I I I I I I 
180 - 

08 - 

E 
t 096 - 
l- 

5 
z 64 - 
b 
E” 
B 0,2- 

06 - 
I I I I 

0 20 40 60 

time t [s] 
Fig. 2. Comparison of the original temperature trace r(t) 
from a point source and a line source for CI = l* lo-‘m*/s at 
a distance y = 2.5 mm. The curves are normalized with the 

value at t = 60 s. 
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“II z sample 

Ir 

real point “rw . /“’ /,‘Td/ 

image source . -x 

image source ??

Fig. 3. The principle of image sources. The real point source 
is reflected at the lower surface (r = 0). The resulting image 
source is reflected at the upper surface (-_ = c/). The new two 
image sources are reflected again at the lower and upper 

surface, and so on. 

For simplification we consider the sample as an infi- 
nite slab. This situation is sketched in Fig. 3. 

Including the image sources equations (4) and (5) 
result in 

T(x, t) = ri J_ erfc i ( 2 
kc 4rl \ &, 

T(x t) 

where 

zz 

R’ BP2 = ol??/?;d’(/l;+l)+f(x’??,Z+r”f/‘). 

(7) 

(8) 

For evaluating our data we posed the source onto 
the surface. That is the situation, which is most easily 
obtained experimentally by preparing an absorbing 
surface. The number of image sources to be summed 

for fitting the experimental curves depends on the 
diffusivity and increases dramatically with decreasing 
sample thickness. The influence of thickness on the 
number of images is shown in Fig. 4. 

As a criterion for ceasing the summation one can 
use a fixed ratio &X)/&O) < IO-’ for the source at x 
compared to the real source at the origin. Alter- 
natively, one can use C”p^(s,)/&o) < IO-‘. which 
guarantees a smaller error when neglecting higher 
terms. If the sample thickness approaches zero the 
number of images goes to infinity. In this case the two- 
dimensional diffusion equation should be used. Here 
sums over images are avoided and the numerical fit- 
ting becomes much taster on the computer. 

iT(x. t) i2 T(x, f) 

it 
~ ‘X,, (7s, l?Y, 

- p^(x. t). i. ,j = 1,2. (9) 

The solution of this equation in case of a point source 
is given by 

T(~. ,) = & dd;;“‘)] E, (“1! 
t (10) 

where 

R’ = &UY ,- 
-I /_ , i.,; = 1,2. (11) 

The case of the line source heating a two-dimensional 
sample corresponds to one-dimensional heat conduc- 
tion. In this case it is not possible to give an analytical 
solution of the one-dimensional heat diffusion equa- 
tion with a heat source switched on at time t = 0. 

The solution of the two-dimensional diffusion equa- 
tion is especially suited for sufficiently thin free- 
standing anisotropic films. What ‘sufficiently thin’ 

number of image sources 
Fig. 4. Temperature r (with bound. cond.):T (without 
bound. cond.) vs the number of image sources for different 

thicknesses d. 
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Fig. 5. The influence of sample thickness: calculated three-dimensional T(f)-curves fitted with the two- 
dimensional solution. 

means can be tested both theoretically and exper- thickness are shown in Fig. 6. From this con- 
imentally. For this purpose we produced master siderations we infer that for a sample thickness d < 0.3 
curves Tl l(t) with the number of image sources as a mm the two-dim treatment is appropriate. 
parameter. To these curves the two-dimensional solu- 
tion is fitted. The results are shown in Fig. 5. The 2.3. Finite sample width 
experimental verification is quite obvious. Results Since samples are not infinitely wide this influence 
obtained with HDPE-samples varying in sample must be treated as well. It can be solved again with 
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501 upper ‘mirror’ 

distance plate 

distance plate 

Fig. 8. Experimental setup to reduce radiation losses: 
polished faces of brass with a gold layer are used as 

“mirrors”. 

w 03 14 1,s 2,o 2,5 
d [mm1 performed a numerical integration. As a rule we have 

Fig. 6. Experimental investigation of the influence of sample found that r/r0 2 10 must hold where r. is the radius 
thickness fitted with the two-dimensional point source. of the source spot and r the distance of the sensing 

point from the source. r,, can also be interpreted as the 

the method of images as well as experimentally by 
integral half width of a Gaussian profile i.e. the half 

slicing a sample into smaller strips. The experimental 
width of a cylinder with the same ‘volume’ (energy 

investigation of this is shown in Fig. 7. This result 
flux) as the Gaussian profile. 

does not depend on the absolute magnitude of the 
diffusivity, which only changes the time scale of data 

2.5. Heat losses to the surrounding 

collection, but it depends on the r/h ratio (r is the 
Heat losses hindering the boundary conditions to 

distance of the thermometer spot from the heating 
be established are due to conduction, convection and 

spot, h is the sample width). 
radiation. The convection losses are avoided by eva- 
cuating the sample compartment. If the pressure is 

2.4. Finite source extension 
chosen to be p < 10. 4mbar heat conduction of the 

Any experimental verification of the method must 
remaining air is also negligible. 

use an extended source e.g. the gaussian profile of a 
During any measurement due to the Stefan-Boltz- 

focused laser beam. An analytical solution consists of 
mann P-law, radiation losses affect the diffusivities 

an integration over the intensity distribution of the 
determined dramatically with increasing temperature. 

source, and is only possible in the one-dimensional 
Only at low temperatures they can be neglected. In 

case. For a constant intensity on a circular surface we 
our case the result is a systematical shift of the thermal 
diffusivity to higher values. The reason is that due to 
the losses the T(t)-curves level off more rapidly than 

I”- without as do curves for higher diffusivities compared 
to lower ones. Thus, a fit trying to mimic that shape 

12 - of the T(t)-curve results in a higher thermal diffusivity 77 
c? ??

?? _ than is really present. 

yE I,0 - ?? - ?? We have tried to overcome this problem exper- 

0 imentally and by data handling. We placed polished 

t 0,8 
faces of brass covered with a layer of gold close (dis- 

- tance < 5 mm) to the sample surface. Holes (C#J - 0.2 

c mm) in case of the point source and a slit in case of 
:z 0,6 - 
2 

the line source (d - 0.2 mm) were drilled for the 

g 
source beam and for the sensing radiation (Fig. 8). 

0,4 - Thus, heat losses by radiation are reduced. 
Z 
C 

If no radiation losses are present, results from tits 

2 02 - embracing different time spans [0, t,,.] must group to 
a horizontal line when plotted vs t,,,. With radiation 

o,o’ ’ ’ ’ ’ ’ ’ ’ ’ ’ ’ losses it must be an increasing curve because losses 
0 5 10 15 20 become more prominent at longer times. We apply a 

sample width b [mm] heuristical procedure to exclude the radiation effects. 

Fig. 7. The influence of finite sample width (PVC with carbon We record the T(t) over a longer time. We then pro- 
black) on the thermal diffusivity x in the case of a point duce N data sets [0, t,] from it by putting t, = t,,,/n, 

source. n = 1,. . A’. Each set is used to determine the appar- 
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Fig. 9. Extrapolation procedure with T vs f (above) and 
the resulting a (below). Extrapolation to t = 0 s gives the 

appropriate diffusivity r*. 

ent diffusivity which is plotted vs t, (Fig. 9). If a 
linearly increasing relationship is found an extra- 
polation to t -+ 0 yields the diffusivity free from radi- 
ation effects. 

This is demonstrated in Fig. 10 with a PVC sample: 
(i) measured with the point source; (ii) measured with 
a line source. The spread of results is demonstrated 

1 
I. 1 *I. I. I 01. I II.1 Ifi .I 

0 10 20 30 40 50 60 70 80 90 

time t [s] 
Fig. 10. Apparent thermal diffusivity vs evaluation time for 
a PVC sample. Extrapolation to t = 0 s gives the “tiue” 

thermal diffusivity. 

32 

-10 0 10 20 30 40 50 60 70 

t,, ISI 
Fig. 11, Extrapolation procedure of an isotropic PE-sample 

for different sample thicknesses. 

by taking temperature records up to different times 
t max and subsequent data evaluation as just explained. 
The plot of the extrapolated data belonging to each 
t,,, indicates the quality of the results. The influence 
of decreasing thickness is an enhancement of radiation 
losses, compared to the total heat content. The curves 
become steeper as seen in Fig. 11. The extrapolated 
result remains the same confirming the validity of our 
treatment. 

It is satisfying to note, that the extrapolated values 
coincide for both methods. Because of the smaller 
power density of the laser beam in case of the line 
source the maximum temperature in the sample 
becomes smaller. Thus, radiation losses decrease, 
which results in a smaller slope. Even if the slopes of 
the curves are very different on account of different 
sample thicknesses they cross at t = 0 s. Thus, this 
procedure appears to be highly reliable. 

2.6. Experimental 
A schematic diagram of the apparatus is shown in 

Fig. 12. For heating the sample we use a CO,-laser 
(1. = 10, 6 pm). To make adjustment easier the invis- 
ible beam of the i.r.-laser is combined with the visible 
beam of a laser-diode. 

A shutter is opened at the time to = 0 s. The laser- 
beam, which is turned round and focused by mirrors, 
heats the rear side of the sample. In case of the line- 
source the laser-beam is spread to a line. At a distance 
from about 2 mm from the heating point or line, 
the heating of the sample is measured with an i.r.- 
microscope. An InSb-detector in the microscope chan- 
ges the heat radiation of the sample chopped by a 
tuning fork into a voltage signal. This signal is filtered 
with a lock-in amplifier, digitized and stored with a 
PC. 
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7 

Laser-diode _=“’ 

Beam- .combiner 

Fig. 12. Schematic diagram of the apparatus 

Table I. Comparison of the measured thermal diffuswity of PTFE and reactor-steel [13] 

PTFE 

T[ Cl k [W:mK] 2 [IO ‘m’,‘s] cp [J/k&K] p[kg/m’] our results r [IO ‘m’/s] 

60 0.299 1.36 1035 2121 1.40 
180 0.307 I .2X II%+ 2009 1.25 

Reactor steel 1.4970 ( x lONiCrMoTiBl5 15) 

T[ Cl h [W/mK] Lx [Io~‘m’:s] <‘p [J,‘kgK] p[kg/m’] our results r [IO ‘m’;s] 

60 14.38 36.5 495.5 7951.0 34.7 
200 16.53 39.9 524.3 7901.7 38.5 

3. COMPARISON TO STEADY-STATE METHODS 

The relative accuracy of the method is rather good 
as can be seen e.g. from Fig. 11. The absolute accuracy 
is more difficult to determine. For this purpose we 
measured two samples in an extended temperature 
range for comparison with steady state methods: (i) a 
reactor steel; (ii) polytetrafluorethylene (PTFE, trade 
names Teflon, Hostaflon). The steady state measure- 
ments of thermal conductivity were performed at the 
PTB (Physikalisch Technische Bundesanstalt, Braun- 
schweig, Germany) who guaranteed an absolute accu- 
racy of 2%. For PTFE the data were taken at two 
different temperatures (see Table 1) and linearly 

interpolated. The diffusivities were calculated using 
the specific heat measured by DSC (Perkin Elmer 
DSC 11) and the density. For the reactor steel a rec- 
ommended interpolation polynom exists between the 
data points given in the table. As Table I shows, the 
agreement of the data is quite good and the overall 
absolute accuracy is about 5% with a slight tendency 
to systematically lower values. 

4. REPRESENTATIVE RESULTS 

4.1. PVC 
The polymer polyvinylchloride (PVC : CH,- 

[CH,CHCI],,-CH,) is an amorphous polymer. At 
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room temperature it is in the glassy state (r, = 90°C). 
For numerous applications because of its brittleness 
it is mostly filled with carbon black to improve shock 
absorbing. We have used such pieces for testing our 
data evaluation and the boundary conditions. 

4.2. Rubber 
Rubbers are polymers in the liquid state (melt) hin- 

dered to flow by crosslinking. Their well-known ten- 
sile properties are due to entropy elasticity. The deter- 
mination of the associated chain orientation is easily 
performed measuring birefringence in the case of 
transparent samples. Like PVC, rubbers are mostly 
filled (e.g. carbon black, caoline, silica, rutile) for 
using them in daily surroundings. The chain orien- 
tation of such samples is very difficult to measure. The 
isotherm-method producing ellipses was the first to 
reveal the magnitude of the anisotropy and, thus, of 
the chain orientation obtained. It is still more sensitive 
than measuring two directions separately. This is clear 
from our measurements. Anisotropy ratios A < 1.2 
can only be measured if in each direction the absolute 
value is known to better accuracy then 10%. The filled 
rubbers tend to higher orientations than unfilled ones 

DOI. 

4.3. PE 
Polyethylene (polymethylene) is chemically a very 

simple linear polymer H,C-[-CH,-I,,-CH,. However, 
like all polymers prepared from the melt it only partly 
crystallizes (volume crystallinity 0.44 < X, < 0.82). 
The superstructures and morphologies depend on 
numerous factors. Reproducible are especially ori- 
ented states with draw ratios i = L/L, > 34, where 
L,, is the initial length and L the actual length. The 
reason is a structural transformation including melt- 
ing-recrystallization processes prior to that stage [ 111. 
Thus, the structure produced depends to a large extent 
only on temperature of the drawing. The overall chain 
orientation is then uniquely related to the draw ratio. 
The heat conduction anisotropy for low draw ratios 
has been investigated by the originally isotherm 
measurement [8]. Now with the advent of ultra-high 
molecular weight PE (linear low density PE, I’, - 0.6) 
and the procedure of drawing dried gels, where the 
molecules are largely disentangled, much higher draw 
ratios and orientations are possible. A macroscopic 
Young’s modulus of half or even two third of the 
crystals chain modulus (300 GPa) has been obtained. 
One could expect that the thermal conductivity would 
rise spectacularly as well. We have measured two series 
of PE from different sources [ 121. The samples were 
strips of 3-10 mm wide and 5&200 pm thick. The 
T(t)-curves could generally be fitted by the two- 
dimensional solution. The results are depicted to- 
gether with measurements on usually drawn low den- 

*Supplied by T. Kanamoto/Tokyo. 
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Fig. 13. Thermal diffusivity of oriented polyethylene (PE) 
and PTFE as a function of draw ratio. 

sity PE in Fig. 13. The strong increase up to a factor 
50 compared to the isotropic value gives hope to the 
preparation of samples with a unidirectional heat con- 
duction in excess of 50 W/mK i.e. in the range of steel. 

4.4. PTFE 
Polytetrafluorethylene is just like PE with the 

hydrogen atoms replaced by fluor atoms. Because of 
their size, steric hindrances force the all trams chains 
to twist, building a 13/6 helix for T < 19.C and a 
15/7 helix at temperatures above 30°C. Since helices 
generally have lower chain moduli a smaller maximum 
heat conduction can be expected, however, the helix 
is forced by steric hindrances of the fluor atoms. This 
stressed configuration may have rather high chain 
moduli. Our measurements on an ultraoriented PTFE 
sample* to our surprise gave a chain direction thermal 
diffusivity comparable to that of PE. The value is 
displayed in Fig. 13. 

5. CONCLUSION 

The method presented is valuable in the case of slab- 
like geometries of bad conductors with even rough 
surfaces as in the case of rubbers, where oxygen 
quickly mars a freshly prepared surface. In the two- 
dimensional case the thin samples may even show 
some wavyness like the highly stretched PE samples. 
Using a line source instead of a point source for heat- 
ing the probe a better signal-to-noise ratio can be 
obtained. The lower power density of the line source 
enables measurements of samples with a low thermal 
stability. The data analysis represented enables a 
reliable determination of the absolute thermal diffu- 
sivity. 
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